

senaite.queue

This add-on enables asynchronous tasks for SENAITE LIMS [https://www.senaite.com], that allows to
better handle concurrent actions and processes when the workload is high. Is
specially indicated for high-demand instances and for when there are custom
processes that take long to complete. Essentially, senaite.queue [https://pypi.org/project/senaite.queue] reduces the
chance of transaction commits by handling tasks asynchronously, in an
unattended and sequential manner.

Once installed, this add-on enables asynchronous processing of those tasks that
usually have a heavier footprint regarding performance, and with highest chance
of transaction conflicts:

	Assignment of analyses to worksheets

	Assignment of worksheet template to a worksheet

	Creation of a worksheet by using a worksheet template

	Workflow actions (submit, verify, etc.) for analyses assigned to worksheets

	Recursive permissions assignment on client contacts creation

This add-on neither provides support for workflow transitions/actions at Sample
level nor for Sample creation. However, this add-on can be extended easily to
match additional requirements.

This documentation is divided in different parts. We recommend that you get
started with Installation and then head over to the Quickstart.
Please check out Tasks handling and Doctests for internals about
senaite.queue.

Table of Contents:

	Installation

	Quickstart
	Queue control panel

	Queueing a task

	Queue monitoring

	Queued task details

	Tasks handling
	Prioritization

	Failed tasks

	Timeout

	Transaction commit conflicts

	Extend and Customize
	Queued task for a workflow action

	Queued task for custom logic

	Doctests
	Queue API

	Server’s Queue utility

	Client’s Queue utility

	Assignment of analyses

	Unassign transition

	Submit transition

	Reject transition

	Retract transition

	Verify transition

	Sample with queued analyses

	Release notes
	Update from 1.0.1 to 1.0.2

	Changelog
	1.0.4 (unreleased)

	1.0.3 (2021-07-24)

	1.0.2 (2020-11-15)

	1.0.1 (2020-02-09)

	1.0.0 (2019-11-10)

	License

Installation

Is strongly recommended to have a SENAITE instance setup in ZEO mode, because
this add-on is especially useful when a reserved zeo client is used to act as
a queue server and at least one additional zeo client for tasks consumption.

In standalone installation, only one CPU / CPU core can be used for processing
requests, with a limited number of threads (usually 2). With a ZEO mode setup,
the database can be used by multiple zeo clients at the same time, each one
using it’s own CPU. See Scalability and ZEO [https://zope.readthedocs.io/en/latest/zopebook/ZEO.html] for further information.

Create a new reserved user in SENAITE instance (under /senaite/acl_users). The
recommended username is queue_consumer.

This user will be used by the consumer to pop tasks from the queue server in a
sequential manner. The consumer will eventually process the task, but acting as
the user who initially triggered the process. However, the reserved user
responsible of dispatching must have enough privileges. Assign this user to
the group “Site Administrator” and/or “Manager”.

First, add this add-on in the eggs section of your buildout configuration file:

[buildout]

...

[instance]
...
eggs =
 ...
 senaite.queue

Then, add a two clients (a consumer and the server) in your buildout
configuration:

Reserved user for dispatching queued tasks
See https://pypi.org/project/senaite.queue
queue-user-name=queue_consumer
queue-user-password=queue_consumer_password

parts =

 queue_consumer
 queue_server

and configure two reserved clients:

[queue_consumer]
ZEO Client reserved for the consumption of queued tasks
<= client_base
recipe = plone.recipe.zope2instance
http-address = 127.0.0.1:8089
zope-conf-additional =
 <clock-server>
 method /senaite/queue_consume
 period 5
 user ${buildout:queue-user-name}
 password ${buildout:queue-user-password}
 host localhost:8089
 </clock-server>

[queue_server]
ZEO Client reserved to act as the server of the queue
<= client_base
recipe = plone.recipe.zope2instance
http-address = 127.0.0.1:8090

Note

These clients will listen to ports 8089 and 8090. They should not be
accessible to regular users. Thus, if you use a load-balancer
(e.g HAProxy), is strongly recommended to not add these clients in
the backend pool.

In most scenarios, this configuration is enough. However, senaite.queue supports
multi consumers, that can be quite useful for those SENAITE installations that
have a very high overload. To add more consumers, add as many zeo client
sections as you need with the additional clock-server zope configuration. Do
not forget to set the value host correctly to all them, because this value is
used by the queue server to identify the consumers when tasks are requested.

The maximum number of concurrent consumers supported by the queue server is 4.

Run bin/buildout afterwards. With this configuration, buildout will download
and install the latest published release of senaite.queue from Pypi [https://pypi.org/project/senaite.queue].

Note

If the buildout fails with a ImportError: cannot import name aead,
please update OpenSSL to v1.1.1 or above. OpenSSL v1.0.2 is no longer
supported by cryptography starting from v3.2. Please, read the
changelog from cryptography [https://cryptography.io/en/latest/changelog.html#v3-2] for further information. Although not
recommended, you can alternatively stick to version 3.1.1 by adding
cryptography=3.1.1 in [versions] section from your buildout.

Once buildout finishes, start the clients:

$ sudo -u plone_daemon bin/client1 start
$ sudo -u plone_daemon bin/queue_server start
$ sudo -u plone_daemon bin/queue_client start

Note

plone_daemon is the default user created by the quick-installer
when installing Plone in ZEO cluster mode. Please check
Installation of Plone [https://docs.plone.org/4/en/manage/installing/installation.html#how-to-install-plone] for further information. You might need to
change this user name depending on how you installed SENAITE.

Then visit your SENAITE site and login with a user with “Site Administrator”
privileges to activate the add-on:

http://localhost:8080/senaite/prefs_install_products_form

Note

It assumes you have a SENAITE zeo client listening to port 8080

Once activated, go to Site Setup > Queue Settings and, in field “Queue Server”,
type the url of the zeo client that will act as the server of the queue.

http://localhost:8090/senaite

Note

Do not forget to specify the site id in the url (usually “senaite”)

Quickstart

This section gives an introduction about senaite.queue [https://pypi.python.org/pypi/senaite.queue]. It assumes you
have SENAITE LIMS [https://www.senaite.com] and senaite.queue already installed, with a consumer
listening at port 8089, the queue server listening at port 8090 and a regular
zeo client listening at port 8080. Please read the Installation for
further details.

Queue control panel

Visit the control panel view for senaite.queue to configure the settings.
This control panel is accessible to users with Site Administrator role,
through “Site Setup” view, “Add-on Configuration” section:

http://localhost:8080/senaite/@@queue-controlpanel

In most cases, the settings that come by default will fit well. Modifying some
of them might speed-up the processing of queued tasks, but might also increase
the chance of conflicts. Therefore, is strongly recommended to monitor the
instance while modifying this settings:

	Queue server: URL of the zeo client that will act as the queue server.
This is, the zeo client others will rely on regarding tasks addition,
retrieval and removal. An empty value or a non-reachable queue server disables
the asynchronous processing of tasks. In such case, system will behave as if
senaite.queue was not installed.

	Number of objects to process per task: This is the default number of
objects to process in a single request when the task contains multiple items.
The items from a task are processed in chunks, and remaining are re-queued for
later. For instance, when a user selects multiple analyses for their
assignment to a worksheet, only one task is generated. If the value defined is
5, the analyses will be assigned in chunks of this size, and the system will
keep generating tasks for the remaining analyses until all them are finally
assigned. Higher values increment the chance of transaction commit conflicts,
while lower values tend to slow down the completion of the whole task.
A value of 0 disables queueing if tasks functionality at all.

	Maximum retries: Number of times a task will be re-queued before being
considered as failed. A value of 0 disables the re-queue of failing tasks.

	Minimum seconds: Minimum number of seconds to book per task. If the task
is performed very rapidly, it will have priority over a transaction done from
userland. In case of conflict, the transaction from userland will fail and
will be retried up to 3 times. This setting makes the thread that handles the
task to take some time to complete, thus preventing threads from userland to
be delayed or fail.

	Maximum seconds: Number of seconds to wait for a task to finish before
being re-queued or considered as failed. System will keep retrying the task
until the value set in ‘Maximum retries’ is reached, at which point the task
will be eventually considered as failed and no further actions will take place.

	Auth secret key: This secret key is used by senaite.queue to generate an
encrypted token (symmetric encryption) for the authentication of requests sent
by queue clients and consumers to the Queue’s server API. Must be 32 url-safe
base64-encoded bytes.

Queueing a task

Login as a SENAITE regular user with “Lab Manager” privileges. Be sure there
are some analyses awaiting for assignment and create a worksheet, either by
manually assigning some analyses or by using a Worksheet Template. As soon as
the worksheet is created, the system displays a viewlet stating that some
analyses have been queued for the current worksheet:

[image: Viewlet showing the number of queued analyses in a Worksheet]
Keep pressing the “Refresh” button and the message will eventually disappear, as
soon as the reserved client finishes processing the task.

Note

If you don’t see any change after refreshing the page several times,
check that you have the consumer client running in background
and the reserved user is properly configured.

Queue monitoring

The queue monitoring view is accessible from the top-right “hamburger” menu,
link “Queue Monitor”:

http://localhost:8080/senaite/queue_tasks

The failed, running and queued tasks are displayed in this view, along with
their Task Unique Identifiers (TUIDs). From this view, the user can manually
re-queue or remove tasks at a glance:

[image: Queue monitor view]
Failed tasks shouldn’t be the norm, but there is always the chance that a task
cannot complete. In order to provide insights about the reason/s behind a
failure, the monitor listing displays also the error trace raised by the system
when trying to process the task.

Queued task details

Given a TUID, the user can see the whole information of a given task in JSON
format. The TUID of each task displayed in the Queue Monitoring view explained
above is a link to the full detail of the task:

{
 "status": "queued",
 "context_uid": "67127b454506455f81d69921beec4e93",
 "context_path": "/senaite/worksheets/WS-018",
 "name": "task_action_submit",
 "retries": 5,
 "uids": [
 "bc0c7489fa974e74b68a680568608277",
 "7e6cc0c0de9449ca953dd8b7dfaffb96",
 "2f8f2a05faa14af19545e9f08b4b282c",
 "b2bd04cb1755493186bea52a50f37326",
 "5531c1adc95e47c38ff11c49ff8ff50b",
 "ef19831a8ef9467db401008c1269b937"
],
 "created": 1598626797.74663,
 "error_message": null,
 "username": "analyst1",
 "priority": 10,
 "max_seconds": 60,
 "task_uid": "2bb771e4bb7cbcf9625bf761377292d8",
 "action": "submit",
 "min_seconds": 2
}

The fields displayed might vary depending on the type of task (the “name” field
defines the type of the task). In the example above, the task refers to the
submission (field action) of results for 6 analyses from worksheet with id
“WS-018” (field context_path). This action has been triggered by the user
with id “analyst1” (field username). The field uids contains the unique
identifiers of the analyses to be submitted, and the context_uid indicates the
unique identifier of the object from which the action/task was triggered.

Note

There are plenty of add-ons for browsers that beautify the generated
JSON, making it’s interpretation more comfortable for humans. These
are some of the plugins you might consider to install in your browser:
JSONView for Firefox [https://addons.mozilla.org/de/firefox/addon/jsonview], JSON Lite for Firefox [https://addons.mozilla.org/en-US/firefox/addon/json-lite],
JSONView for Google Chrome [https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc?hl=en]

Tasks handling

SENAITE QUEUE keeps a prioritized queue that contains the tasks to be processed.
Each time the clock wakes-up (clock-server directive in buildout
configuration, see Installation), the system checks if the queue is
currently locked by the tasks consumer. If locked, the system does nothing and
returns to a neutral state, awaiting for the undergoing task to finish. If the
queue is not locked, the consumer pops the next task from the queue. The
consumer then starts a new thread for processing the task.

As soon as the processing of the task finishes, the consumer notifies the Queue
so it can return to a neutral state and dispatch next task. This task is removed
from the queue.

If an error arises while processing the task, the consumer notifies the Queue
about the incident as well. This time, the queue resumes to neutral state, but
labels the task as “failed” and is not removed.

Prioritization

Two factors are taken into account for tasks prioritization: creation date time
and task custom priority value.

By default, system applies a priority value of 10 for all type of tasks. This
value can be changed for specific tasks though. The lesser the priority value,
the higher will be the priority of that task over others.

However, the creation date time is also used for tasks prioritization. So, even
if a task has a higher priority based on the priority value explained before,
tasks that were created long before this task will be prioritized. For this to
happen, the system calculates the task priority with this formula:

\[P = t + 300 * p\]

where:

	P: Priority of the task

	t: Number of seconds passed since epoch when the task was queued

	p: Priority value

For instance, given two tasks added to the queue with a difference of 5 minutes
(300 seconds), the first one with a p of 100 and the second with a p of 10:

\[\begin{align}\begin{aligned}P_0 = 1600003935 + 300 \times 100 = 1600033935\\P_1 = (1600003935 + 300) + 300 \times 10 = 1600037235\\P_0 < P_1\end{aligned}\end{align} \]

In this example, the task that was added first will be processed first, although
its priority value was greater than second’s (remember the lesser the priority
value, the more priority).

This mechanism prevents the Queue to be jeopardized by high-priority tasks when
there is a lot of overload. Also, each time a new attempt for a failed task
takes place, the created value is updated accordingly. Thus, the mechanism
also acts as a safeguard for when a task takes long to complete and requires
several attempts to finish: it makes room for other tasks to be processed
instead of retrying the same task time again and again.

Failed tasks

The Queue discards a task as “failed” because of any of the following reasons:

	The process did not complete because of transaction commit conflicts

	The process did not complete because of other errors

	The process reached the timeout defined in settings

By default, the Queue will try to re-process the failed tasks up to 3 times.
This value can be changed in Queue control panel. view: Maximum retries.
When a task is considered as failed, the Queue transitions from status “locked”
to “unlocked” and therefore, next task becomes available for consumption. If the
process does not succeed after maximum retries is reached, the task is discarded
as failed again, but no further retries will take place.

On each re-attempt, the queue sets a delay of 5 seconds, giving some time before
the task is re-processed. This mechanism reduces the chance of failures and also
makes room for other tasks to be processed before retries.

Also, the number of items to process for that precise task is reduced in a half.
This reduces the chance of both conflicts and timeouts.

When a process does not complete successfully, the thread in charge of handling
the task ends gracefully and the queue is immediately notified. This is the
safest case, cause there is no risk that more threads the CPU can handle are
started accidentally.

However, a process might take long to complete or maybe the zeo client was
stopped while a task was being processed. These are the two scenarios the last
reason refers to. In such cases, the Queue does not know if the task is actually
running or is not. Still, the Queue needs to resume because otherwise, no
further tasks will ever be processed: the queue would enter into a dead-lock
status. The Timeout mechanism (see next section) prevents this to happen.

Timeout

When system retries a task, it will increase the timeout for that specific task.
Timeout is the time in seconds the Queue will wait for the task to complete
before being discarded as failed. By default, this value is set to 120 seconds,
but can be changed in Queue control panel: Maximum seconds.

Given a value of timeout of 120 seconds, if a task fails the first time, the
system will increase the timeout for that task to 180 seconds. If it fails a
second time, it will increase its timeout to 270 seconds: the system multiplies
the seconds by a factor of 1.5 each time.

Note

Note that if Maximum retries is set to 5 and the timeout is 120
seconds, the time in seconds the Queue will wait for the task to
complete in the last attempt will be 608 seconds (10 minutes).
Take this into account when configuring default values for
Maximum seconds and Maximum retries.

Transaction commit conflicts

When a database transaction commit conflict takes place, the system retries the
same transaction up to 3 times as per Zope’s default. However, if the last
transaction attempt cannot be completed, the Queue re-queues the task for
further attempts, up to the value defined in Queue control panel:
Maximum retries.

Extend and Customize

This package is built to be extended. You can use the Zope Component
Architecture to provide specific Adapters to both control how a task is
processed and to indicate which processes/logic needs to be executed
asynchronously by senaite.queue [https://pypi.python.org/pypi/senaite.queue]. The process or logic to be handled by
senaite.queue can be from either SENAITE LIMS [https://www.senaite.com] or from any other
SENAITE-specific add-on.

Queued task for a workflow action

Let’s imagine you have your own add-on with a custom transition/action (e.g.
dispatch) in sample’s workflow, that transitions the sample to a dispatched
status. The user can choose multiple samples at once from the listing and
transition all them at once. This functionality might entail an undesired impact
on performance, specially if hundreds of samples are selected at once.

To address this functionality, we can extend senaite.queue in our own add-on.
We are not interested in replacing the logic behind such transition, but feed
the queue for this action. Therefore, we can make use of the generic adapter
WorkflowGenericQueueAdapter that comes by default with senaite.queue and
only do the registration in configure.zcml:

<adapter
 name="workflow_action_dispatch"
 for="*
 zope.publisher.interfaces.browser.IBrowserRequest"
 factory="senaite.queue.actions.WorkflowActionGenericQueueAdapter"
 provides="bika.lims.interfaces.IWorkflowActionAdapter"
 permission="zope.Public" />

This is a named adapter, and the name must be the action id with
workflow_action prepended. When the workflow action dispatch is triggered,
the system looks for registered adapters and if a match is found, the adapter
is called. Note that for field is neither context-specific nor layer specific,
so this adapter will always be called when the action dispatch is triggered,
regardless of context and layer.

Alternatively, you can directly feed the queue programmatically:

from senaite.queue import api
api.add_action_task(objects, action)

Parameter objects can be either a brain, an object, a uid or a list/tuple of any
of them.

Queued task for custom logic

Imagine that instead of having a workflow action “dispatch” in place, you rather
have a simple view from which the user can choose samples and generate a
dispatch pdf from all them at once. Basically you want to feed the queue
directly by your own:

class DispatchSamplesView(BrowserView):

 def __call__(self):
 ...

 # Get the selected samples from the form
 uids = self.request.form.get("selected_uids", [])

 # Queue the task
 params = {"uids": uids}
 api.add_task("my.addon.task_dispatch", self.context, **params)

Note the following:

	We use a “uids” field to store the list of objects to be processed

	We’ve set a custom task id my.addon.task_dispatch. This task id will be used
by senaite.queue to look for a suitable adapter able to handle tasks with
this id.

Create an adapter in charge of handling the task:

from bika.lims import api as _api
from Products.Archetypes.interfaces.base import IBaseObject
from senaite.queue import api
from senaite.queue.queue import get_chunks_for
from senaite.queue.interfaces import IQueuedTaskAdapter

DISPATCH_TASK_ID = "my.addon.task_dispatch"

class DispatchQueuedTaskAdapter(object):
 """Adapter for dispatch transition
 """
 implements(IQueuedTaskAdapter)
 adapts(IBaseObject)

 def __init__(self, context):
 self.context = context

 def process(self, task):
 """Process the objects from the task
 """
 # If there are too many objects to process, split them in chunks to
 # prevent the task to take too much time to complete
 chunks = get_chunks_for(task)

 # Process the first chunk
 objects = map(_api.get_object_by_uid, chunks[0])
 map(dispatch_sample, objects)

 # Add remaining objects to the queue
 params = {"uids": chunks[1]}
 api.add_task(DISPATCH_TASK_ID, self.context, **params)

 def dispatch_sample(self, sample):
 """Generates a dispatch report for this sample
 """
 # Generate the pdf here
 pdf = generate_dispatch_pdf(sample)

 # Store the pdf as an attachment to the sample
 att = _api.create(sample.aq_parent, "Attachment")
 att.setAttachmentFile(open(pdf))
 sample.setAttachment(att)

Register this adapter in configure.zcml:

<adapter
 name="my.addon.task_dispatch"
 factory="my.addon.adapters.DispatchQueuedTaskAdapter"
 provides="senaite.queue.interfaces.IQueuedTaskAdapter"
 for="*" />

Note that this adapter is not only in charge of generating the dispatch pdfs,
but also splits the tasks into separate chunks preventing overload.

Doctests

Queue API

senaite.queue comes with an api to facilitate the interaction with queue.

Running this test from the buildout directory:

bin/test test_textual_doctests -t API

Test Setup

Needed imports:

>>> import transaction
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from senaite.queue import api
>>> from senaite.queue.queue import QueueTask
>>> from senaite.queue.tests import utils as test_utils
>>> from bika.lims import api as _api
>>> from plone import api as plone_api
>>> from zope import globalrequest

Functional Helpers:

>>> def new_sample():
... return test_utils.create_sample([Cu], client, contact,
... sampletype, receive=False)

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Retrieve the Queue Utility

The queue utility is the engine from senaite.queue that is responsible of
providing access to the queue storage. Unless the current zeo client is
configured to act as the queue’s server, api.get_queue() always returns the
client queue utility:

>>> api.get_queue()
<senaite.queue.client.utility.ClientQueueUtility object at...

If we configure the current zeo client as the server, we get the server queue
utility instead:

>>> api.is_queue_server()
False

>>> api.get_server_url()
'http://localhost:8080/senaite'

>>> key = "senaite.queue.server"
>>> plone_api.portal.set_registry_record(key, u'http://nohost/plone')
>>> transaction.commit()
>>> api.get_queue()
<senaite.queue.server.utility.ServerQueueUtility object at...

>>> api.is_queue_server()
True

>>> api.get_server_url()
'http://nohost/plone'

Both utility queues provide same interface and same behavior is expected,
regardless of the type of QueueUtility. See ClientQueueUtility.rst and
ServerQueueUtility.rst doctests for additional information.

Queue status

We can check the queue status:

>>> api.get_queue_status()
'ready'

We can even use the helper is_queue_ready:

>>> api.is_queue_ready()
True

Queue might be enabled, but not ready:

>>> api.is_queue_enabled()
True

Enable/Disable queue

The queue can be disabled and enabled from Site Setup > Queue Settings:

>>> key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(key, 0)
>>> api.is_queue_enabled()
False

>>> api.is_queue_ready()
False

>>> api.get_queue_status()
'disabled'

We can re-enable the queue by defining the default’s chunk size:

>>> plone_api.portal.set_registry_record(key, 10)
>>> api.is_queue_enabled()
True

>>> api.is_queue_ready()
True

>>> api.get_queue_status()
'ready'

Add a task

We can add a task without the need of retrieving the queue utility or without
the need of creating a QueueTask object:

>>> sample = new_sample()
>>> kwargs = {"action": "receive"}
>>> task = api.add_task("task_action_receive", sample)
>>> isinstance(task, QueueTask)
True

>>> api.get_queue().get_tasks()
[{...}]

>>> len(api.get_queue())
1

Add an action task

Tasks for workflow actions are quite common. Therefore, a specific function for
actions is also available:

>>> task = api.add_action_task(sample, "submit")
>>> isinstance(task, QueueTask)
True

>>> len(api.get_queue())
2

Add assign action task

The action “assign” (for analyses) requires not only the worksheet, but also the
list of analyses to be assigned and the slot positions as well. Therefore, a
helper function to make it easier is also available:

>>> worksheet = _api.create(portal.worksheets, "Worksheet")
>>> analyses = sample.getAnalyses(full_objects=True)
>>> task = api.add_assign_task(worksheet, analyses)
>>> isinstance(task, QueueTask)
True

>>> len(api.get_queue())
3

Check if an object is queued

>>> new_sample = new_sample()
>>> api.is_queued(new_sample)
False

>>> api.is_queued(sample)
True

>>> api.is_queued(worksheet)
True

Flush the queue

Flush the queue to make room for other tests:

>>> test_utils.flush_queue(browser, self.request)

Server’s Queue utility

The IServerQueueUtility is an utility that acts as a singleton and is used
to store and keep track of tasks added by queue clients and the delivery of
tasks to consumers.

This utility is only used by the zeo instance that acts as the Queue Server.
The rest (consumers and queue clients), use IClientQueueUtility instead.

Running this test from the buildout directory:

bin/test test_textual_doctests -t ServerQueueUtility

Test Setup

Needed imports:

>>> import binascii
>>> import os
>>> import time
>>> from bika.lims import api as _api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from senaite.queue.interfaces import IQueueUtility
>>> from senaite.queue.interfaces import IServerQueueUtility
>>> from senaite.queue.queue import new_task
>>> from senaite.queue.tests import utils as test_utils
>>> from zope.component import getUtility

Functional Helpers:

>>> def new_sample():
... return test_utils.create_sample([Cu], client, contact,
... sampletype, receive=False)

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Retrieve the server’s queue utility

The server queue utility provides all the functionalities required to manage the
queue and the tasks from the server side. Is a global utility, acting like a
singleton, and it guarantees no conflicts when multiple threads from same
instance (zeo client) operate against. To retrieve the server utility:

>>> getUtility(IServerQueueUtility)
<senaite.queue.server.utility.ServerQueueUtility object at...

Server utility implements IQueueUtility interface too:

>>> utility = getUtility(IServerQueueUtility)
>>> IQueueUtility.providedBy(utility)
True

Add a task

The queue server does not have any task awaiting yet:

>>> utility.is_empty()
True

Create a new object and the task first:

>>> sample = new_sample()
>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)

Add the new task to the utility

>>> added_task = utility.add(task)
>>> added_task == task
True

>>> utility.is_empty()
False

>>> len(utility)
1

Only tasks from QueueTask type are supported:

>>> utility.add("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Adding an existing task has no effect:

>>> dummy = utility.add(task)
>>> dummy is None
True

>>> len(utility)
1

However, we can add another task for same context and with same name:

>>> kwargs = {"action": "receive"}
>>> copy_task = new_task("task_action_receive", sample, **kwargs)
>>> utility.add(copy_task) == copy_task
True

>>> len(utility)
2

But is not possible to add a new task for same context and task name when the
unique wildcard is used:

>>> kwargs = {"action": "receive", "unique": True}
>>> unique_task = new_task("task_action_receive", sample, **kwargs)
>>> utility.add(unique_task) is None
True

>>> len(utility)
2

Delete a task

We can delete a task directly:

>>> utility.delete(copy_task)
>>> len(utility)
1

Or by using its task uid:

>>> added = utility.add(copy_task)
>>> len(utility)
2

>>> utility.delete(copy_task.task_uid)
>>> len(utility)
1

Get a task

We can retrieve the task we added before by it’s uid:

>>> retrieved_task = utility.get_task(task.task_uid)
>>> retrieved_task == task
True

If we ask for a task that does not exist, returns None:

>>> dummy_uid = binascii.hexlify(os.urandom(16))
>>> utility.get_task(dummy_uid) is None
True

If we ask for something that is not a valid uid, we get an exception:

>>> utility.get_task("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Get tasks

Or we can get all the tasks the utility contains:

>>> tasks = utility.get_tasks()
>>> tasks
[{...}]

>>> task in tasks
True

>>> len(tasks)
1

Get tasks by status

We can even get the tasks filtered by their status:

>>> utility.get_tasks(status=["queued", "running"])
[{...}]

>>> utility.get_tasks(status="queued")
[{...}]

>>> utility.get_tasks(status="running")
[]

Get tasks by context

Or we can get the task by context:

>>> utility.get_tasks_for(sample)
[{...}]

>>> utility.get_tasks_for(_api.get_uid(sample))
[{...}]

>>> utility.get_tasks_for(task.task_uid)
[]

>>> utility.get_tasks_for("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Get tasks by context and task name

>>> utility.get_tasks_for(sample, name="task_action_receive")
[{...}]

>>> utility.get_tasks_for(sample, name="dummy")
[]

Get objects uids from tasks

We can also ask for all the uids from objects the utility contains:

>>> uids = utility.get_uids()
>>> len(uids)
1

>>> _api.get_uid(sample) in uids
True

>>> task.task_uid in uids
False

Ask if a task exists

>>> utility.has_task(task)
True

>>> utility.has_task(task.task_uid)
True

>>> utility.has_task(_api.get_uid(sample))
False

>>> utility.has_task("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Ask if a task for a context exists

>>> utility.has_tasks_for(sample)
True

>>> utility.has_tasks_for(_api.get_uid(sample))
True

>>> utility.has_tasks_for(task.task_uid)
False

>>> utility.has_tasks_for("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Ask if a task for a context and name exists

>>> utility.has_tasks_for(sample, name="task_action_receive")
True

>>> utility.has_tasks_for(sample, name="dummy")
False

Pop a task

When a task is popped, the utility changes the status of the task to “running”,
cause expects the task has been popped for consumption:

>>> consumer_id = u'http://nohost'
>>> popped = utility.pop(consumer_id)
>>> popped.status
'running'

We can still add new tasks at the same time, even if they are for same context
and with same name:

>>> kwargs = {"action": "receive"}
>>> copy_task = new_task("task_action_receive", sample, **kwargs)
>>> utility.add(copy_task) == copy_task
True

However, the server does not allow the consumer to pop more tasks until receives
an acknowledgment that the previously popped task is done:

>>> utility.pop(consumer_id) is None
True

Even if we ask again:

>>> utility.pop(consumer_id) is None
True

Unless we wait for 10 seconds, when the server assumes the consumer failed while
processing the task. Consumers always check that there is no thread running
from their side before doing a pop(). Also, a consumer (that in fact, is a
zeo client) might be stopped at some point. Therefore, this timeout mechanism
is used as a safety fallback to prevent the queue to enter in a dead-lock:

>>> time.sleep(11)
>>> utility.pop(consumer_id) is None
True

The previous task is now re-queued by the server:

>>> popped = utility.get_task(popped.task_uid)
>>> popped.status
'queued'

>>> popped.get("error_message")
'Purged on pop (http://nohost)'

And a pop returns now the next task:

>>> next_task = utility.pop(consumer_id)
>>> next_task.status
'running'

>>> next_task.task_uid != popped.task_uid
True

Delete the newly added task, so we keep only one task in the queue for testing:

>>> utility.delete(next_task)
>>> len(utility)
1

If we try now to pop again, the task the queue server considered as timeout
won’t be popped because the server adds a delay of 5 seconds before the task
can be popped again. This mechanism prevents the queue to be jeopardized by
recurrent failing tasks and makes room for other tasks to be processed:

>>> popped.get("delay")
5

>>> utility.pop(consumer_id) is None
True

>>> time.sleep(5)
>>> delayed = utility.pop(consumer_id)
>>> delayed.task_uid == popped.task_uid
True

Flush the queue:

>>> utility.delete(delayed)
>>> len(utility)
0

Task timeout

Create a new task:

>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)
>>> task = utility.add(task)

When a consumer thread in charge of processing a given task times out, it
notifies the queue accordingly so the task is re-queued:

>>> running = utility.pop(consumer_id)
>>> running.status
'running'

>>> utility.timeout(running)
>>> queued = utility.get_task(running.task_uid)
>>> queued.task_uid == running.task_uid
True

>>> queued.status
'queued'

>>> queued.get("error_message")
'Timeout'

Each time a task is timed out, the number of seconds the system will wait for
the thread in charge of processing the task to complete increases. This
mechanism is used as a fall-back for when the processing of task takes longer
than initially expected:

>>> queued.get("max_seconds") > running.get("max_seconds")
True

Flush the queue:

>>> utility.delete(queued)
>>> len(utility)
0

Task failure

Create a new task:

>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)
>>> task = utility.add(task)

If an error arises when processing a task, the consumer tells the server to
mark the task as failed. By default, the queue server re-queues the task up
to a pre-defined number of times before considering the task as failed. The
most common reason why a task fails is because of a transaction commit conflict
with a transaction taken place from userland. This mechanism is used as a
safeguard for when the workload is high and tasks keep failing because of this.

Pop a task first:

>>> running = utility.pop(consumer_id)
>>> task_uid = running.task_uid
>>> running.status
'running'

>>> running.retries
3

Flag as failed and the number of retries decreases in one unit:

>>> utility.fail(running)
>>> failed = utility.get_task(running.task_uid)
>>> failed.task_uid == running.task_uid
True

>>> failed.retries
2
>>> failed.status
'queued'

When the number of retries reach 0, the server eventually considers the task
as failed, its status becomes failed and cannot be popped anymore:

>>> time.sleep(5)
>>> failed = utility.pop(consumer_id)
>>> utility.fail(failed)
>>> failed = utility.get_task(failed.task_uid)
>>> failed.status
'queued'
>>> failed.retries
1

>>> time.sleep(5)
>>> failed = utility.pop(consumer_id)
>>> utility.fail(failed)
>>> failed = utility.get_task(failed.task_uid)
>>> failed.status
'queued'
>>> failed.retries
0

>>> time.sleep(5)
>>> failed = utility.pop(consumer_id)
>>> utility.fail(failed)
>>> failed = utility.get_task(failed.task_uid)
>>> failed.status
'failed'
>>> failed.retries
0

>>> time.sleep(5)
>>> utility.pop(consumer_id) is None
True

Flush the queue:

>>> utility.delete(failed)
>>> len(utility)
0

Task done

When the consumer notifies a task has been done to the server queue, the task
is removed from the queue:

>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)
>>> task = utility.add(task)
>>> utility.has_task(task)
True

>>> running = utility.pop(consumer_id)
>>> utility.has_task(running)
True

>>> utility.done(running)
>>> utility.has_task(running)
False

Flush the queue

Flush the queue to make room for other tests:

>>> deleted = map(utility.delete, utility.get_tasks())

Client’s Queue utility

The IClientQueueUtility is an utility that acts as a singleton and is used
as an interface to interact with the Server’s queue. It provides functions to
add tasks to the queue and retrieve them.

This utility is used by the instances that either act as queue clients or
consumers. The zeo instance that acts as the queue server uses
IServerQueueUtility instead. IClientQueueUtility has a cache of tasks
that keeps up-to-date with those from server’s queue through POST calls.

However, both utilities provide same interface, so developer does not need to
worry about which utility is actually using: except for some particular cases
involving failed and ghost tasks, their expected behaviour is exactly the
same.

Running this test from the buildout directory:

bin/test test_textual_doctests -t ClientQueueUtility

Test Setup

Needed imports:

>>> import binascii
>>> import os
>>> import time
>>> import transaction
>>> from bika.lims import api as _api
>>> from plone import api as plone_api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from senaite.queue.interfaces import IQueueUtility
>>> from senaite.queue.interfaces import IClientQueueUtility
>>> from senaite.queue.interfaces import IServerQueueUtility
>>> from senaite.queue.queue import new_task
>>> from senaite.queue.tests import utils as test_utils
>>> from senaite.queue.tests.utils import RequestTestHandler
>>> from zope import globalrequest
>>> from zope.component import getUtility

Functional Helpers:

>>> def new_sample():
... return test_utils.create_sample([Cu], client, contact,
... sampletype, receive=False)

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)
>>> sample = new_sample()

Setup the current instance as the queue server too:

>>> key = "senaite.queue.server"
>>> host = u'http://nohost/plone'
>>> plone_api.portal.set_registry_record(key, host)
>>> transaction.commit()

Retrieve the client’s queue utility

The client queue utility provides all the functionalities required to manage the
the queue from the client side. This utility interacts internally with the queue
server via JSON API calls, but provides same interface. Therefore, the user
should expect the same behavior no matter if is using the client’s queue or
the server’s queue.

>>> getUtility(IClientQueueUtility)
<senaite.queue.client.utility.ClientQueueUtility object at...

Client utility implements IQueueUtility interface too:

>>> utility = getUtility(IClientQueueUtility)
>>> IQueueUtility.providedBy(utility)
True

The utility makes use of requests module to ask the queue server. We
override the requests handler here for the doctests to mimic its behavior, but
using plone.testing.z2.Browser (instead:

>>> utility._req = RequestTestHandler(browser, self.request)

We we will also use the server’s queue utility to validate integrity:

>>> s_utility = getUtility(IServerQueueUtility)

Add a task

The queue client does not have any task awaiting yet:

>>> utility.is_empty()
True

Add a task for a sample:

>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)

Add the new task:

>>> utility.add(task) == task
True

>>> utility.is_empty()
False

>>> len(utility)
1

The server queue contains the task as well:

>>> len(s_utility)
1

>>> s_utility.has_task(task)
True

Only tasks from QueueTask type are supported:

>>> utility.add("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Adding an existing task has no effect:

>>> utility.add(task) is None
True

>>> len(utility)
1

>>> len(s_utility)
1

However, we can add another task for same context and with same name:

>>> kwargs = {"action": "receive", "test": "test"}
>>> copy_task = new_task("task_action_receive", sample, **kwargs)
>>> utility.add(copy_task) == copy_task
True

>>> len(utility)
2

>>> len(s_utility)
2

But is not possible to add a new task for same context and task name when the
unique wildcard is used:

>>> kwargs = {"action": "receive", "unique": True}
>>> unique_task = new_task("task_action_receive", sample, **kwargs)
>>> utility.add(unique_task) is None
True

>>> len(utility)
2

The server queue contains the two tasks as well:

>>> len(s_utility)
2

>>> all(map(s_utility.has_task, utility.get_tasks()))
True

Delete a task

We can delete a task directly:

>>> utility.delete(copy_task)
>>> len(utility)
1

And the task gets removed from the server’s queue as well:

>>> len(s_utility)
1

We can also delete a task by using the task uid:

>>> added = utility.add(copy_task)
>>> len(utility)
2
>>> len(s_utility)
2

>>> utility.delete(copy_task.task_uid)
>>> len(utility)
1
>>> len(s_utility)
1

Get a task

We can retrieve the task we added before by it’s uid:

>>> retrieved_task = utility.get_task(task.task_uid)
>>> retrieved_task == task
True

If we ask for a task that does not exist, returns None:

>>> dummy_uid = binascii.hexlify(os.urandom(16))
>>> utility.get_task(dummy_uid) is None
True

If we ask for something that is not a valid uid, we get an exception:

>>> utility.get_task("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Get tasks

Or we can get all the tasks the utility contains:

>>> tasks = utility.get_tasks()
>>> tasks
[{...}]

>>> task in tasks
True

>>> len(tasks)
1

Get tasks by status

We can even get the tasks filtered by their status:

>>> utility.get_tasks(status=["queued", "running"])
[{...}]

>>> utility.get_tasks(status="queued")
[{...}]

>>> utility.get_tasks(status="running")
[]

Get tasks by context

Or we can get the task by context:

>>> utility.get_tasks_for(sample)
[{...}]

>>> utility.get_tasks_for(_api.get_uid(sample))
[{...}]

>>> utility.get_tasks_for(task.task_uid)
[]

>>> utility.get_tasks_for("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Get tasks by context and task name

>>> utility.get_tasks_for(sample, name="task_action_receive")
[{...}]

>>> utility.get_tasks_for(sample, name="dummy")
[]

Get objects uids from tasks

We can also ask for all the uids from objects the utility contains:

>>> uids = utility.get_uids()
>>> len(uids)
1

>>> _api.get_uid(sample) in uids
True

>>> task.task_uid in uids
False

Ask if a task exists

>>> utility.has_task(task)
True

>>> utility.has_task(task.task_uid)
True

>>> utility.has_task(_api.get_uid(sample))
False

>>> utility.has_task("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Ask if a task for a context exists

>>> utility.has_tasks_for(sample)
True

>>> utility.has_tasks_for(_api.get_uid(sample))
True

>>> utility.has_tasks_for(task.task_uid)
False

>>> utility.has_tasks_for("dummy")
Traceback (most recent call last):
[...]
ValueError: 'dummy' is not supported

Ask if a task for a context and name exists

>>> utility.has_tasks_for(sample, name="task_action_receive")
True

>>> utility.has_tasks_for(sample, name="dummy")
False

Synchronize with queue server

If we add a task directly to the server’s queue:

>>> kwargs = {"action": "receive"}
>>> server_task = new_task("task_action_receive", sample, **kwargs)
>>> s_utility.add(server_task) == server_task
True
>>> s_utility.has_task(server_task)
True
>>> len(s_utility)
2

The task is not in client’s queue local pool:

>>> server_task in utility.get_tasks()
False

However, the client queue falls back to a search against server’s queue when
asked for an specific task that does not exist in the local pool:

>>> utility.has_task(server_task)
True

>>> utility.get_task(server_task.task_uid)
{...}

Client queue’s local pool of tasks can be easily synchronized with the tasks
from the server’s queue:

>>> len(utility)
1

>>> utility.sync()
>>> len(utility)
2

>>> server_task in utility.get_tasks()
True

>>> all(map(s_utility.has_task, utility.get_tasks()))
True

When the task status in the server is “running”, the corresponding task of the
local pool is always updated on synchronization:

>>> consumer_id = u'http://nohost'
>>> running = s_utility.pop(consumer_id)
>>> running.status
'running'

>>> local_task = utility.get_task(running.task_uid)
>>> local_task.status
'queued'

>>> utility.sync()
>>> local_task = utility.get_task(running.task_uid)
>>> local_task.status
'running'

Flush the queue:

>>> deleted = map(utility.delete, utility.get_tasks())
>>> len(utility)
0
>>> len(s_utility)
0

Pop a task

Add a new task to the queue:

>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)
>>> utility.add(task) == task
True

When a task is popped, the utility changes the status of the task to “running”,
cause expects that the task has been popped for consumption:

>>> consumer_id = u'http://nohost'
>>> popped = utility.pop(consumer_id)
>>> popped.status
'running'

We can still add new tasks at the same time, even if they are for same context
and with same name:

>>> kwargs = {"action": "receive"}
>>> copy_task = new_task("task_action_receive", sample, **kwargs)
>>> utility.add(copy_task) == copy_task
True

However, is not allowed to consume more more tasks unless the queue server
receives an acknowledgment that the previously popped task is done:

>>> utility.pop(consumer_id) is None
True

Even if we ask again:

>>> utility.pop(consumer_id) is None
True

Unless we wait for 10 seconds, when the server assumes the consumer failed while
processing the task. Consumers always check that there is no thread running
from their side before doing a pop(). Also, a consumer (that in fact, is a
zeo client) might be stopped at some point. Therefore, this timeout mechanism
is used as a safety fallback to prevent the queue to enter in a dead-lock:

>>> time.sleep(11)
>>> utility.pop(consumer_id) is None
True

The previous task is now re-queued:

>>> popped = utility.get_task(popped.task_uid)
>>> popped.status
'queued'

>>> popped.get("error_message")
'Purged on pop (http://nohost)'

And a pop returns now the next task:

>>> next_task = utility.pop(consumer_id)
>>> next_task.status
'running'

>>> next_task.task_uid != popped.task_uid
True

Delete the newly added task, so we keep only one task in the queue for testing:

>>> utility.delete(next_task)
>>> len(utility)
1

If we try now to pop again, the task the queue server considered as timeout
won’t be popped because the server adds a delay of 5 seconds before the task
can be popped again. This mechanism prevents the queue to be jeopardized by
recurrent failing tasks and makes room for other tasks to be processed:

>>> popped.get("delay")
5

>>> utility.pop(consumer_id) is None
True

>>> time.sleep(5)
>>> delayed = utility.pop(consumer_id)
>>> delayed.task_uid == popped.task_uid
True

Flush the queue:

>>> utility.delete(delayed)
>>> len(utility)
0

Task timeout

Create a new task:

>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)
>>> task = utility.add(task)

When a consumer thread in charge of processing a given task times out, it
notifies the queue accordingly so the task is re-queued:

>>> running = utility.pop(consumer_id)
>>> running.status
'running'

>>> utility.timeout(running)
>>> queued = utility.get_task(running.task_uid)
>>> queued.task_uid == running.task_uid
True

>>> queued.status
'queued'

>>> queued.get("error_message")
'Timeout'

Each time a task is timed out, the number of seconds the system will wait for
the thread in charge of processing the task to complete increases. This
mechanism is used as a fall-back for when the processing of task takes longer
than initially expected:

>>> queued.get("max_seconds") > running.get("max_seconds")
True

Flush the queue:

>>> utility.delete(queued)
>>> len(utility)
0

Task failure

Create a new task:

>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)
>>> task = utility.add(task)

If an error arises when processing a task, the client queue tells the server to
mark the task as failed. By default, the queue server re-queues the task up
to a pre-defined number of times before considering the task as failed. The
most common reason why a task fails is because of a transaction commit conflict
with a transaction taken place from userland. This mechanism is used as a
safeguard for when the workload is high and tasks keep failing because of this.

Pop a task first:

>>> running = utility.pop(consumer_id)
>>> task_uid = running.task_uid
>>> running.status
'running'

>>> running.retries
3

Flag as failed and the number of retries decreases in one unit:

>>> utility.fail(running)
>>> failed = utility.get_task(running.task_uid)
>>> failed.task_uid == running.task_uid
True

>>> failed.retries
2
>>> failed.status
'queued'

When the number of retries reach 0, the server eventually considers the task
as failed, its status becomes failed and cannot be popped anymore:

>>> time.sleep(5)
>>> failed = utility.pop(consumer_id)
>>> utility.fail(failed)
>>> failed = utility.get_task(failed.task_uid)
>>> failed.status
'queued'
>>> failed.retries
1

>>> time.sleep(5)
>>> failed = utility.pop(consumer_id)
>>> utility.fail(failed)
>>> failed = utility.get_task(failed.task_uid)
>>> failed.status
'queued'
>>> failed.retries
0

>>> time.sleep(5)
>>> failed = utility.pop(consumer_id)
>>> utility.fail(failed)
>>> failed = utility.get_task(failed.task_uid)
>>> failed.status
'failed'
>>> failed.retries
0

>>> time.sleep(5)
>>> utility.pop(consumer_id) is None
True

Flush the queue:

>>> utility.delete(failed)
>>> len(utility)
0

Task done

When the client notifies a task has been done to the server queue, the task is
removed from the queue:

>>> kwargs = {"action": "receive"}
>>> task = new_task("task_action_receive", sample, **kwargs)
>>> task = utility.add(task)
>>> utility.has_task(task)
True

>>> running = utility.pop(consumer_id)
>>> utility.has_task(running)
True

>>> utility.done(running)
>>> utility.has_task(running)
False

Flush the queue

Flush the queue to make room for other tests:

>>> test_utils.flush_queue(browser, self.request)

Assignment of analyses

SENAITE Queue supports the assign transition for analyses, either for when
the analyses are assigned manually (via Add analyses view from Worksheet) or
when using a Worksheet Template.

Running this test from the buildout directory:

bin/test test_textual_doctests -t WorksheetAnalysesAssign

Test Setup

Needed imports:

>>> import time
>>> import transaction
>>> from bika.lims import api as _api
>>> from plone import api as plone_api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD
>>> from senaite.queue import api
>>> from senaite.queue.tests import utils as test_utils
>>> from zope import globalrequest

Functional Helpers:

>>> def new_samples(num_analyses):
... samples = []
... for num in range(num_analyses):
... sample = test_utils.create_sample([Cu], client, contact,
... sampletype, receive=True)
... samples.append(sample)
... transaction.commit()
... return samples

>>> def get_analyses_from(samples):
... analyses = []
... for sample in samples:
... analyses.extend(sample.getAnalyses(full_objects=True))
... return analyses

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Setup the current instance as the queue server too:

>>> key = "senaite.queue.server"
>>> host = u'http://nohost/plone'
>>> plone_api.portal.set_registry_record(key, host)
>>> transaction.commit()

Manual assignment of analyses to a Worksheet

Set the default number of objects to process per task to 5:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Create 15 Samples with 1 analysis each:

>>> samples = new_samples(15)
>>> analyses = get_analyses_from(samples)

Create an empty worksheet and add all analyses:

>>> worksheet = _api.create(portal.worksheets, "Worksheet")
>>> worksheet.addAnalyses(analyses)
>>> transaction.commit()

The worksheet is queued now:

>>> api.is_queued(worksheet)
True

And the analyses as well:

>>> queued = map(api.is_queued, analyses)
>>> all(queued)
True

None of the analyses have been transitioned:

>>> transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(transitioned)
0

The queue contains one task:

>>> queue = api.get_queue()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(non_transitioned)
10

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

And the worksheet is still queued:

>>> api.is_queued(worksheet)
True

Change the number of items to process per task to 2:

>>> plone_api.portal.set_registry_record(chunk_key, 2)
>>> transaction.commit()

Pop a task and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Only 2 analyses are transitioned now:

>>> transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(transitioned)
7

>>> non_transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(non_transitioned)
8

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

>>> api.is_queued(worksheet)
True

We can disable the queue. Set the number of items to process per task to 0:

>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Because the queue contains tasks not yet processed, the queue remains enabled,
although is not ready:

>>> api.is_queue_enabled()
True

>>> api.is_queue_ready()
False

>>> api.get_queue_status()
'resuming'

Queue does not allow the addition of new tasks, but remaining tasks are
processed as usual but will transition all remaining analyses at once:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

>>> queue.is_empty()
True

>>> transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(non_transitioned)
0

>>> any(map(api.is_queued, transitioned))
False

>>> api.is_queued(worksheet)
False

Since all analyses have been processed, the worksheet is no longer queued and
the queue is now disabled:

>>> api.is_queued(worksheet)
False

>>> api.is_queue_enabled()
False

>>> api.is_queue_ready()
False

>>> api.get_queue_status()
'disabled'

Assignment of analyses through Worksheet Template

Analyses can be assigned to a worksheet by making use of a Worksheet Template.
In such case, the system must behave exactly the same way as before.

Set the number of analyses to be transitioned in a single process:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Create 15 Samples with 1 analysis each:

>>> samples = new_samples(15)
>>> analyses = get_analyses_from(samples)

Create a Worksheet Template with 15 slots reserved for Cu analysis:

>>> template = _api.create(setup.bika_worksheettemplates, "WorksheetTemplate")
>>> template.setService([Cu])
>>> layout = map(lambda idx: {"pos": idx + 1, "type": "a"}, range(15))
>>> template.setLayout(layout)
>>> transaction.commit()

Use the template for Worksheet creation:

>>> worksheet = _api.create(portal.worksheets, "Worksheet")
>>> worksheet.applyWorksheetTemplate(template)
>>> transaction.commit()

The worksheet is now queued:

>>> api.is_queued(worksheet)
True

And the analyses as well:

>>> queued = map(api.is_queued, analyses)
>>> all(queued)
True

None of the analyses have been transitioned:

>>> transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(transitioned)
0

And the queue contains one task:

>>> queue = api.get_queue()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

Wait for the task delay. This is a mechanism to prevent consumers to start
processing while the life-cycle of current request has not been finished yet:

>>> task = queue.get_tasks_for(worksheet)[0]
>>> time.sleep(task.get("delay", 0))

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(non_transitioned)
10

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

And the worksheet is still queued:

>>> api.is_queued(worksheet)
True

As the queue confirms:

>>> queue.is_empty()
False

>>> len(queue)
1

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(non_transitioned)
5

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

Since there are still 5 analyses remaining, the Worksheet is still queued:

>>> api.is_queued(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(non_transitioned)
0

>>> any(map(api.is_queued, transitioned))
False

The queue is now empty:

>>> queue.is_empty()
True

And the worksheet is no longer queued:

>>> api.is_queued(worksheet)
False

Unassign transition

SENAITE Queue comes with an adapter for generic actions (e.g. submit, unassign).
Generic actions don’t require additional logic other than transitioning and this
is handled by DC workflow. Thus, the adapter for generic actions provided by
senaite.queue only deal with the number of chunks to process per task, with
no additional logic. Most transitions from senaite.core match with these
requirements.

Running this test from the buildout directory:

bin/test test_textual_doctests -t WorksheetAnalysesUnassign

Test Setup

Needed imports:

>>> import transaction
>>> from bika.lims import api as _api
>>> from plone import api as plone_api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD
>>> from senaite.queue import api
>>> from senaite.queue.tests import utils as test_utils
>>> from zope import globalrequest

Functional Helpers:

>>> def new_sample(services):
... return test_utils.create_sample(services, client, contact,
... sampletype, receive=True)

>>> def new_worksheet(num_analyses):
... analyses = []
... for num in range(num_analyses):
... sample = new_sample([Cu])
... analyses.extend(sample.getAnalyses(full_objects=True))
... worksheet = _api.create(portal.worksheets, "Worksheet")
... worksheet.addAnalyses(analyses)
... transaction.commit()
... return worksheet

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Setup the current instance as the queue server too:

>>> key = "senaite.queue.server"
>>> host = u'http://nohost/plone'
>>> plone_api.portal.set_registry_record(key, host)
>>> transaction.commit()
>>> api.get_queue()
<senaite.queue.server.utility.ServerQueueUtility object at...

Unassign transition

Disable the queue first, so assign transitions is performed non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()

Enable the queue so we can trap the unassign transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Unassign analyses:

>>> test_utils.handle_action(worksheet, analyses, "unassign")

The worksheet is queued and the analyses as well:

>>> api.is_queued(worksheet)
True

>>> len(test_utils.filter_by_state(analyses, "unassigned"))
0

>>> all(map(api.is_queued, analyses))
True

And the queue contains one task:

>>> queue = api.get_queue()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
10

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

And the worksheet is still queued:

>>> api.is_queued(worksheet)
True

As the queue confirms:

>>> queue.is_empty()
False

>>> len(queue)
1

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
5

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

Since there are still 5 analyses remaining, the Worksheet is still queued:

>>> api.is_queued(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
0

>>> any(map(api.is_queued, transitioned))
False

The queue is now empty:

>>> queue.is_empty()
True

And the worksheet is no longer queued:

>>> api.is_queued(worksheet)
False

Unassign transition (with ClientQueue)

Perform same test as before, but now using the ClientQueueUtility:

>>> queue = test_utils.get_client_queue(browser, self.request)

Disable the queue first, so submit and assign transitions are performed
non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()

Enable the queue so we can trap the unassign transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Unassign the analyses:

>>> test_utils.handle_action(worksheet, analyses, "unassign")

The queue contains one task:

>>> queue.sync()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

>>> all(filter(queue.get_tasks_for, analyses))
True

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
10

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
5

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "unassigned")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
0

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> queue.is_empty()
True

>>> queue.has_tasks_for(worksheet)
False

Submit transition

SENAITE Queue comes with an adapter for generic actions (e.g. submit, unassign).
Generic actions don’t require additional logic other than transitioning and this
is handled by DC workflow. Thus, the adapter for generic actions provided by
senaite.queue only deal with the number of chunks to process per task, with
no additional logic. Most transitions from senaite.core match with these
requirements.

Running this test from the buildout directory:

bin/test test_textual_doctests -t WorksheetAnalysesSubmit

Test Setup

Needed imports:

>>> import transaction
>>> from bika.lims import api as _api
>>> from plone import api as plone_api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD
>>> from senaite.queue import api
>>> from senaite.queue.tests import utils as test_utils
>>> from zope import globalrequest

Functional Helpers:

>>> def new_sample(services):
... return test_utils.create_sample(services, client, contact,
... sampletype, receive=True)

>>> def new_worksheet(num_analyses):
... analyses = []
... for num in range(num_analyses):
... sample = new_sample([Cu])
... analyses.extend(sample.getAnalyses(full_objects=True))
... worksheet = _api.create(portal.worksheets, "Worksheet")
... worksheet.addAnalyses(analyses)
... transaction.commit()
... return worksheet

>>> def set_analyses_results(worksheet):
... for analysis in worksheet.getAnalyses():
... analysis.setResult(13)
... transaction.commit()

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Setup the current instance as the queue server too:

>>> key = "senaite.queue.server"
>>> host = u'http://nohost/plone'
>>> plone_api.portal.set_registry_record(key, host)
>>> transaction.commit()
>>> api.get_queue()
<senaite.queue.server.utility.ServerQueueUtility object at...

Submit transition

Disable the queue first, so assign transition is performed non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses and set results:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)

Enable the queue so we can trap the submit transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Submit the analyses

>>> test_utils.handle_action(worksheet, analyses, "submit")

The worksheet is now queued:

>>> api.is_queued(worksheet)
True

The worksheet is queued and the analyses as well:

>>> api.is_queued(worksheet)
True

>>> len(test_utils.filter_by_state(analyses, "to_be_verified"))
0

>>> all(map(api.is_queued, analyses))
True

And the queue contains one task:

>>> queue = api.get_queue()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
10

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

And the worksheet is still queued:

>>> api.is_queued(worksheet)
True

As the queue confirms:

>>> queue.is_empty()
False

>>> len(queue)
1

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
5

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

Since there are still 5 analyses remaining, the Worksheet is still queued:

>>> api.is_queued(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
0

>>> any(map(api.is_queued, transitioned))
False

The queue is now empty:

>>> queue.is_empty()
True

And the worksheet is no longer queued:

>>> api.is_queued(worksheet)
False

Submit transition (with ClientQueue)

Perform same test as before, but now using the ClientQueueUtility:

>>> queue = test_utils.get_client_queue(browser, self.request)

Disable the queue first, so assign transition is performed non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses, set a result and submit all them:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)

Enable the queue so we can trap the submit transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Submit the analyses

>>> test_utils.handle_action(worksheet, analyses, "submit")

The queue contains one task:

>>> queue.sync()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

>>> all(filter(queue.get_tasks_for, analyses))
True

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
10

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
5

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> len(non_transitioned)
0

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> queue.is_empty()
True

>>> queue.has_tasks_for(worksheet)
False

Reject transition

SENAITE Queue comes with an adapter for generic actions (e.g. submit, unassign).
Generic actions don’t require additional logic other than transitioning and this
is handled by DC workflow. Thus, the adapter for generic actions provided by
senaite.queue only deal with the number of chunks to process per task, with
no additional logic. Most transitions from senaite.core match with these
requirements.

Running this test from the buildout directory:

bin/test test_textual_doctests -t WorksheetAnalysesReject

Test Setup

Needed imports:

>>> import transaction
>>> from bika.lims import api as _api
>>> from plone import api as plone_api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD
>>> from senaite.queue import api
>>> from senaite.queue.tests import utils as test_utils
>>> from zope import globalrequest

Functional Helpers:

>>> def new_sample(services):
... return test_utils.create_sample(services, client, contact,
... sampletype, receive=True)

>>> def new_worksheet(num_analyses):
... analyses = []
... for num in range(num_analyses):
... sample = new_sample([Cu])
... analyses.extend(sample.getAnalyses(full_objects=True))
... worksheet = _api.create(portal.worksheets, "Worksheet")
... worksheet.addAnalyses(analyses)
... transaction.commit()
... return worksheet

>>> def set_analyses_results(worksheet):
... for analysis in worksheet.getAnalyses():
... analysis.setResult(13)
... transaction.commit()

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Setup the current instance as the queue server too:

>>> key = "senaite.queue.server"
>>> host = u'http://nohost/plone'
>>> plone_api.portal.set_registry_record(key, host)
>>> transaction.commit()

Reject transition

Disable the queue first, so submit and assign transitions are performed
non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses, set a result and submit all them:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)
>>> test_utils.handle_action(worksheet, analyses, "submit")

Enable the queue so we can trap the reject transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Reject the results:

>>> test_utils.handle_action(worksheet, analyses, "reject")

The worksheet is queued and the analyses as well:

>>> api.is_queued(worksheet)
True

>>> len(test_utils.filter_by_state(analyses, "rejected"))
0

>>> all(map(api.is_queued, analyses))
True

And the queue contains one task:

>>> queue = api.get_queue()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "rejected")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
10

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

And the worksheet is still queued:

>>> api.is_queued(worksheet)
True

As the queue confirms:

>>> queue.is_empty()
False

>>> len(queue)
1

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "rejected")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
5

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

Since there are still 5 analyses remaining, the Worksheet is still queued:

>>> api.is_queued(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "rejected")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
0

>>> any(map(api.is_queued, transitioned))
False

The queue is now empty:

>>> queue.is_empty()
True

And the worksheet is no longer queued:

>>> api.is_queued(worksheet)
False

Reject transition (with ClientQueue)

Perform same test as before, but now using the ClientQueueUtility:

>>> queue = test_utils.get_client_queue(browser, self.request)

Disable the queue first, so submit and assign transitions are performed
non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses, set a result and submit all them:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)
>>> test_utils.handle_action(worksheet, analyses, "submit")

Enable the queue so we can trap the reject transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Retract the results:

>>> test_utils.handle_action(worksheet, analyses, "reject")

The queue contains one task:

>>> queue.sync()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

>>> all(filter(queue.get_tasks_for, analyses))
True

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "rejected")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
10

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "rejected")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
5

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "rejected")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
0

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> queue.is_empty()
True

>>> queue.has_tasks_for(worksheet)
False

Retract transition

SENAITE Queue comes with an adapter for generic actions (e.g. submit, unassign).
Generic actions don’t require additional logic other than transitioning and this
is handled by DC workflow. Thus, the adapter for generic actions provided by
senaite.queue only deal with the number of chunks to process per task, with
no additional logic. Most transitions from senaite.core match with these
requirements.

Running this test from the buildout directory:

bin/test test_textual_doctests -t WorksheetAnalysesRetract

Test Setup

Needed imports:

>>> import transaction
>>> from bika.lims import api as _api
>>> from plone import api as plone_api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD
>>> from senaite.queue import api
>>> from senaite.queue.tests import utils as test_utils
>>> from zope import globalrequest

Functional Helpers:

>>> def new_sample(services):
... return test_utils.create_sample(services, client, contact,
... sampletype, receive=True)

>>> def new_worksheet(num_analyses):
... analyses = []
... for num in range(num_analyses):
... sample = new_sample([Cu])
... analyses.extend(sample.getAnalyses(full_objects=True))
... worksheet = _api.create(portal.worksheets, "Worksheet")
... worksheet.addAnalyses(analyses)
... transaction.commit()
... return worksheet

>>> def set_analyses_results(worksheet):
... for analysis in worksheet.getAnalyses():
... analysis.setResult(13)
... transaction.commit()

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Setup the current instance as the queue server too:

>>> key = "senaite.queue.server"
>>> host = u'http://nohost/plone'
>>> plone_api.portal.set_registry_record(key, host)
>>> transaction.commit()
>>> api.get_queue()
<senaite.queue.server.utility.ServerQueueUtility object at...

Retract transition

Disable the queue first, so submit and assign transitions are performed
non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses, set a result and submit all them:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)
>>> test_utils.handle_action(worksheet, analyses, "submit")

Enable the queue so we can trap the retract transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Retract the results:

>>> test_utils.handle_action(worksheet, analyses, "retract")

The worksheet is queued and the analyses as well:

>>> api.is_queued(worksheet)
True

>>> len(test_utils.filter_by_state(analyses, "retracted"))
0

>>> all(map(api.is_queued, analyses))
True

And the queue contains one task:

>>> queue = api.get_queue()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "retracted")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
10

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

And the worksheet is still queued:

>>> api.is_queued(worksheet)
True

As the queue confirms:

>>> queue.is_empty()
False

>>> len(queue)
1

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "retracted")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
5

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

Since there are still 5 analyses remaining, the Worksheet is still queued:

>>> api.is_queued(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "retracted")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
0

>>> any(map(api.is_queued, transitioned))
False

The queue is now empty:

>>> queue.is_empty()
True

And the worksheet is no longer queued:

>>> api.is_queued(worksheet)
False

Retract transition (with ClientQueue)

Perform same test as before, but now using the ClientQueueUtility:

>>> queue = test_utils.get_client_queue(browser, self.request)

Disable the queue first, so submit and assign transitions are performed
non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses, set a result and submit all them:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)
>>> test_utils.handle_action(worksheet, analyses, "submit")

Enable the queue so we can trap the retract transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Retract the results:

>>> test_utils.handle_action(worksheet, analyses, "retract")

The queue contains one task:

>>> queue.sync()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

>>> all(filter(queue.get_tasks_for, analyses))
True

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "retracted")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
10

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "retracted")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
5

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "retracted")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
0

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> queue.is_empty()
True

>>> queue.has_tasks_for(worksheet)
False

Verify transition

SENAITE Queue comes with an adapter for generic actions (e.g. submit, unassign).
Generic actions don’t require additional logic other than transitioning and this
is handled by DC workflow. Thus, the adapter for generic actions provided by
senaite.queue only deal with the number of chunks to process per task, with
no additional logic. Most transitions from senaite.core match with these
requirements.

Running this test from the buildout directory:

bin/test test_textual_doctests -t WorksheetAnalysesVerify

Test Setup

Needed imports:

>>> import transaction
>>> from bika.lims import api as _api
>>> from plone import api as plone_api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD
>>> from senaite.queue import api
>>> from senaite.queue.tests import utils as test_utils
>>> from zope import globalrequest

Functional Helpers:

>>> def new_sample(services):
... return test_utils.create_sample(services, client, contact,
... sampletype, receive=True)

>>> def new_worksheet(num_analyses):
... analyses = []
... for num in range(num_analyses):
... sample = new_sample([Cu])
... analyses.extend(sample.getAnalyses(full_objects=True))
... worksheet = _api.create(portal.worksheets, "Worksheet")
... worksheet.addAnalyses(analyses)
... transaction.commit()
... return worksheet

>>> def set_analyses_results(worksheet):
... for analysis in worksheet.getAnalyses():
... analysis.setResult(13)
... transaction.commit()

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Enable the self-verification:

>>> setup.setSelfVerificationEnabled(True)
>>> setup.getSelfVerificationEnabled()
True

Setup the current instance as the queue server too:

>>> key = "senaite.queue.server"
>>> host = u'http://nohost/plone'
>>> plone_api.portal.set_registry_record(key, host)
>>> transaction.commit()
>>> api.get_queue()
<senaite.queue.server.utility.ServerQueueUtility object at...

Verify transition

Disable the queue first, so submit and assign transitions are performed
non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses, set a result and submit all them:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)
>>> test_utils.handle_action(worksheet, analyses, "submit")

Enable the queue so we can trap the verify transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Verify the results:

>>> test_utils.handle_action(worksheet, analyses, "verify")

The worksheet is queued and the analyses as well:

>>> api.is_queued(worksheet)
True

>>> len(test_utils.filter_by_state(analyses, "verified"))
0

>>> all(map(api.is_queued, analyses))
True

And the queue contains one task:

>>> queue = api.get_queue()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "verified")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
10

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

And the worksheet is still queued:

>>> api.is_queued(worksheet)
True

As the queue confirms:

>>> queue.is_empty()
False

>>> len(queue)
1

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "verified")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
5

>>> any(map(api.is_queued, transitioned))
False

>>> all(map(api.is_queued, non_transitioned))
True

Since there are still 5 analyses remaining, the Worksheet is still queued:

>>> api.is_queued(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "verified")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
0

>>> any(map(api.is_queued, transitioned))
False

The queue is now empty:

>>> queue.is_empty()
True

And the worksheet is no longer queued:

>>> api.is_queued(worksheet)
False

Verify transition (with ClientQueue)

Perform same test as before, but now using the ClientQueueUtility:

>>> queue = test_utils.get_client_queue(browser, self.request)

Disable the queue first, so submit and assign transitions are performed
non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses, set a result and submit all them:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)
>>> test_utils.handle_action(worksheet, analyses, "submit")

Enable the queue so we can trap the verify transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Verify the results:

>>> test_utils.handle_action(worksheet, analyses, "verify")

The queue contains one task:

>>> queue.sync()
>>> queue.is_empty()
False

>>> len(queue)
1

>>> len(queue.get_tasks_for(worksheet))
1

>>> all(filter(queue.get_tasks_for, analyses))
True

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The first chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "verified")
>>> len(transitioned)
5

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
10

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Next chunk of analyses has been processed:

>>> transitioned = test_utils.filter_by_state(analyses, "verified")
>>> len(transitioned)
10

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
5

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> all(map(queue.has_tasks_for, non_transitioned))
True

>>> queue.has_tasks_for(worksheet)
True

Pop and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Last chunk of analyses is processed:

>>> transitioned = test_utils.filter_by_state(analyses, "verified")
>>> len(transitioned)
15

>>> non_transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> len(non_transitioned)
0

>>> queue.sync()
>>> any(map(queue.has_tasks_for, transitioned))
False

>>> queue.is_empty()
True

>>> queue.has_tasks_for(worksheet)
False

Sample with queued analyses

Samples that contain queued analyses cannot be transitioned until all analyses
it contains are successfully processed.

Running this test from buildout directory:

bin/test test_textual_doctests -t SampleWithQueuedAnalyses

Test Setup

Needed imports:

>>> import transaction
>>> from bika.lims import api as _api
>>> from bika.lims.workflow import getAllowedTransitions
>>> from plone import api as plone_api
>>> from plone.app.testing import setRoles
>>> from plone.app.testing import TEST_USER_ID
>>> from plone.app.testing import TEST_USER_PASSWORD
>>> from senaite.queue import api
>>> from senaite.queue.tests import utils as test_utils
>>> from zope import globalrequest

Functional Helpers:

>>> def new_sample(services):
... return test_utils.create_sample(services, client, contact,
... sampletype, receive=True)

>>> def new_worksheet(num_analyses):
... analyses = []
... for num in range(num_analyses):
... sample = new_sample([Cu])
... analyses.extend(sample.getAnalyses(full_objects=True))
... worksheet = _api.create(portal.worksheets, "Worksheet")
... worksheet.addAnalyses(analyses)
... transaction.commit()
... return worksheet

>>> def set_analyses_results(worksheet):
... for analysis in worksheet.getAnalyses():
... analysis.setResult(13)
... transaction.commit()

>>> def samples_transitions_allowed(analyses):
... samples = map(lambda an: an.getRequest(), analyses)
... transitions = map(lambda samp: getAllowedTransitions(samp), samples)
... transitions = map(lambda trans: any(trans), transitions)
... return all(transitions)

Variables:

>>> portal = self.portal
>>> request = self.request
>>> setup = _api.get_setup()
>>> browser = self.getBrowser()
>>> globalrequest.setRequest(request)
>>> setRoles(portal, TEST_USER_ID, ["LabManager", "Manager"])
>>> transaction.commit()

Create some basic objects for the test:

>>> setRoles(portal, TEST_USER_ID, ['Manager',])
>>> client = _api.create(portal.clients, "Client", Name="Happy Hills", ClientID="HH", MemberDiscountApplies=True)
>>> contact = _api.create(client, "Contact", Firstname="Rita", Lastname="Mohale")
>>> sampletype = _api.create(setup.bika_sampletypes, "SampleType", title="Water", Prefix="W")
>>> labcontact = _api.create(setup.bika_labcontacts, "LabContact", Firstname="Lab", Lastname="Manager")
>>> department = _api.create(setup.bika_departments, "Department", title="Chemistry", Manager=labcontact)
>>> category = _api.create(setup.bika_analysiscategories, "AnalysisCategory", title="Metals", Department=department)
>>> Cu = _api.create(setup.bika_analysisservices, "AnalysisService", title="Copper", Keyword="Cu", Price="15", Category=category.UID(), Accredited=True)

Setup the current instance as the queue server too:

>>> key = "senaite.queue.server"
>>> host = u'http://nohost/plone'
>>> plone_api.portal.set_registry_record(key, host)
>>> transaction.commit()
>>> api.get_queue()
<senaite.queue.server.utility.ServerQueueUtility object at...

Queued analyses

Disable the queue first, so assign transition is performed non-async:

>>> chunk_key = "senaite.queue.default"
>>> plone_api.portal.set_registry_record(chunk_key, 0)
>>> transaction.commit()

Create a worksheet with some analyses and set results:

>>> worksheet = new_worksheet(15)
>>> analyses = worksheet.getAnalyses()
>>> set_analyses_results(worksheet)

Enable the queue so we can trap the submit transition:

>>> plone_api.portal.set_registry_record(chunk_key, 5)
>>> transaction.commit()

Submit the analyses

>>> test_utils.handle_action(worksheet, analyses, "submit")

No analyses have been transitioned. All them have been queued:

>>> test_utils.filter_by_state(analyses, "to_be_verified")
[]

Pop a task and process:

>>> queue = api.get_queue()
>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

Only the first chunk is transitioned and the samples they belong to can be
transitioned as well:

>>> transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> samples_transitions_allowed(transitioned)
True

While the rest cannot be transitioned, these analyses are still queued:

>>> samples_transitions_allowed(analyses)
False

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> samples_transitions_allowed(non_transitioned)
False

Pop a task and process again:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

The next chunk of analyses has been processed and again, only the Samples for
those that have been transitioned can be transitioned too:

>>> transitioned = test_utils.filter_by_state(analyses, "to_be_verified")
>>> samples_transitions_allowed(transitioned)
True

While the rest of Samples (5) cannot be transitioned yet:

>>> samples_transitions_allowed(analyses)
False

>>> non_transitioned = test_utils.filter_by_state(analyses, "assigned")
>>> samples_transitions_allowed(non_transitioned)
False

Pop a task and process:

>>> popped = queue.pop("http://nohost")
>>> test_utils.process(browser, popped.task_uid)
'{...Processed...}'

All analyses have been processed at this point, so all samples can be
transitioned now:

>>> samples_transitions_allowed(analyses)
True

Release notes

Update from 1.0.1 to 1.0.2

With version 1.0.2, the legacy storage for queued tasks has changed and helper
storages (e.g. for Worksheets) are no longer required. IQueued marker
interface is no longer used neither. Most of the base code has been refactored
keeping in mind the following objectives:

	Less complexity: less code, better code

	Less chance of transaction commit conflicts

	Boost performance: better experience, with no delays

All these changes also makes the add-on easier to extend and maintain. The
downside is that old legacy storage is no longer used and therefore, tasks that
were queued before the upgrade will be discarded.

	Be sure there are no remaining tasks in the queue before the upgrade

	If you have your own add-on extending senaite.queue, please review the changes
and check if some parts of your add-on require modifications

A queue server has been introduced. Therefore, two zeo clients are recommended:
one that acts as the server and at least another one in charge of consuming
tasks. Also, this version now depends on three additional packages: requests,
senaite.jsonapi and cryptography. Please read the installation
instructions and run buildout to download the dependencies.

Changelog

1.0.4 (unreleased)

	#19 Fix APIError when processing orphan UIDs

	#18 New add_copy function to add copies of existing tasks

	#17 Fix task splits are not being generated for generic actions

	#16 Preserve task properties when requeueing chunks of action tasks

	#15 Fix traceback on tasks for the reindex of objects security

	#14 Use initial task’s default chunk size when creating subsequent tasks

1.0.3 (2021-07-24)

	#21 Improve the reindex security objects process

	Skip guard checks when current thread is a consumer

	Make the creation of WS with WST assignment more efficient

	Pin cryptography==3.1.1

	Fix client’s queue tasks in “queued” status are not updated when “running”

1.0.2 (2020-11-15)

	Support for multiple consumers (up to 4 concurrent processes)

	Added JSON API endpoints for both queue server and clients

	Queue server-client implementation, without the need of annotations

	Added PAS plugin for authentication, with symmetric encryption

	Delegate the reindex object security to queue when linking contacts to users

	#7 Allow to queue generic worflow actions without specific adapter

	#7 Redux and better performance

	#6 Allow the prioritization of tasks

	#5 No actions can be done to worksheets with queued jobs

1.0.1 (2020-02-09)

	Allow to manually assign the username to the task to be queued

	Support for failed tasks

	Notify when the value for max_seconds_unlock is too low

	#3 New queue_tasks view with the list of tasks and statistics

	#2 Add max_retries setting for failing tasks

	#1 Add sample guard to prevent transitions when queued analyses

1.0.0 (2019-11-10)

First version

License

SENAITE.QUEUE Copyright (C) 2019-2020 RIDING BYTES & NARALABS

SENAITE.QUEUE [https://pypi.python.org/pypi/senaite.queue] is available under the terms of the GNU General Public
License, version 2 [https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt] as published by the Free Software Foundation [https://www.fsf.org/about/].

The source code of this software, together with a copy of the license can be
found at this repository: https://github.com/senaite/senaite.queue

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

Index

 _static/ajax-loader.gif

_images/queue_monitor.png
Queue monitor

<

v

@

Falled tasks
TaskUD Priority
ao2114a14 0001
oveozearc 0002
Tifcesacd 0003
17sesnsT 0004
TraEs23es 0005
6acaszz2 000
e2ramea 0007
oEsruses 0008
lacssgaca 0009
calsobeca 0010
seeozarza 0011
2oavbac2s 0012
sisedcoss 0013
aorerosse 0014
frcosTsos 0015

Requeue @

Al tasks

Created v

2020-10-30721:51:53

2020-10-30721:52:41

2020-10-30721:52:49

2020-10-30721:53:20

2020-10-30721:53:32

2020-10-30721:53:51

2020-10-30721:54:36

2020-10-30721:55:14

2020-10-30721:55:45

2020-10-30721:45:02

2020-10-30721:45:02

2020-10-30721:45:02

2020-10-30721:50:02

2020-10-30721:50:02

2020-10-30721:50:02

f—

task_action_veriy
task_action_veriy
task_action_veriy
task_action_veriy
task_action_veriy
task_action_veriy
task_action_veriy
task_aclion_veriy
task_aclion_veriy
senaie autopublish task_autopublish
senaie autopublish task_autopublish
senaie autopublish task_autopublish
senaie autopublish task_autopublish
senaie autopublish task_autopublish

senaite autopublish task_autopubiish

Context

Isenaite/orksheelsWS20-4754

IsenaiteorksheelsWS20-4763

Isenaitemorksheels WS20-4716

IsenaiteorksheelsWS20-4765

Isenaiteorksheels WS20-4719

IsenaiteorksheelsWS20-4753

IsenaiteorksheelsWS20-4757

Isenaite/orksheelsWS20-4766

Isenaiteorksheels/WS20-4750

Isenaitefntemnal_clients/client-438/WB20-62847

Isenaitefnternal_clients/client-16/WB20-62848
Isenaitefntemnal_clients/client-437/WB20-62849
Isenaitefinternal_clients/client-447/WB20-62850

Isenaitefntemnal_clients/client 447/WB20-62851

Isenaitefnternal_clients/client-431/WB20-62852

Username

tatrenyika
tatrenyika
tatrenyika
tatrenyika
tatrenyika
tatrenyika
tatrenyika
tatienyika
tatienyika
system_dzemon
system_dzemon
system_dzemon
system_dzemon
system_dzemon

system_daemon

Status.

queued

queued

queued

queued

queued

queued

queued

queued

queued

queued

queued

queued

queued

queued

queued

15715

_images/worksheet_queued_analyses_viewlet.png
Analyses in process ...
43 analyses are being processed in background. | Refresh

You can work on other worksheets meanwhile.

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 senaite.queue

 		
 Installation

 		
 Quickstart

 		
 Queue control panel

 		
 Queueing a task

 		
 Queue monitoring

 		
 Queued task details

 		
 Tasks handling

 		
 Prioritization

 		
 Failed tasks

 		
 Timeout

 		
 Transaction commit conflicts

 		
 Extend and Customize

 		
 Queued task for a workflow action

 		
 Queued task for custom logic

 		
 Doctests

 		
 Queue API

 		
 Test Setup

 		
 Retrieve the Queue Utility

 		
 Queue status

 		
 Enable/Disable queue

 		
 Add a task

 		
 Add an action task

 		
 Add assign action task

 		
 Check if an object is queued

 		
 Flush the queue

 		
 Server’s Queue utility

 		
 Test Setup

 		
 Retrieve the server’s queue utility

 		
 Add a task

 		
 Delete a task

 		
 Get a task

 		
 Get tasks

 		
 Get tasks by status

 		
 Get tasks by context

 		
 Get tasks by context and task name

 		
 Get objects uids from tasks

 		
 Ask if a task exists

 		
 Ask if a task for a context exists

 		
 Ask if a task for a context and name exists

 		
 Pop a task

 		
 Task timeout

 		
 Task failure

 		
 Task done

 		
 Flush the queue

 		
 Client’s Queue utility

 		
 Test Setup

 		
 Retrieve the client’s queue utility

 		
 Add a task

 		
 Delete a task

 		
 Get a task

 		
 Get tasks

 		
 Get tasks by status

 		
 Get tasks by context

 		
 Get tasks by context and task name

 		
 Get objects uids from tasks

 		
 Ask if a task exists

 		
 Ask if a task for a context exists

 		
 Ask if a task for a context and name exists

 		
 Synchronize with queue server

 		
 Pop a task

 		
 Task timeout

 		
 Task failure

 		
 Task done

 		
 Flush the queue

 		
 Assignment of analyses

 		
 Test Setup

 		
 Manual assignment of analyses to a Worksheet

 		
 Assignment of analyses through Worksheet Template

 		
 Unassign transition

 		
 Test Setup

 		
 Unassign transition

 		
 Unassign transition (with ClientQueue)

 		
 Submit transition

 		
 Test Setup

 		
 Submit transition

 		
 Submit transition (with ClientQueue)

 		
 Reject transition

 		
 Test Setup

 		
 Reject transition

 		
 Reject transition (with ClientQueue)

 		
 Retract transition

 		
 Test Setup

 		
 Retract transition

 		
 Retract transition (with ClientQueue)

 		
 Verify transition

 		
 Test Setup

 		
 Verify transition

 		
 Verify transition (with ClientQueue)

 		
 Sample with queued analyses

 		
 Test Setup

 		
 Queued analyses

 		
 Release notes

 		
 Update from 1.0.1 to 1.0.2

 		
 Changelog

 		
 1.0.4 (unreleased)

 		
 1.0.3 (2021-07-24)

 		
 1.0.2 (2020-11-15)

 		
 1.0.1 (2020-02-09)

 		
 1.0.0 (2019-11-10)

 		
 License

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

